Spherical codes, maximal local packing density, and the golden ratio
نویسندگان
چکیده
golden ratio Adam B. Hopkins, Frank H. Stillinger, and Salvatore Torquato Department of Chemistry, Princeton University, Princeton, New Jersey 08544, USA Department of Physics, Princeton University, Princeton, New Jersey 08544, USA Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08544, USA School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08544, USA
منابع مشابه
Asymptotically Dense Spherical Codes—Part I: Wrapped Spherical Codes
A new class of spherical codes called wrapped spherical codes is constructed by “wrapping” any sphere packing in Euclidean space onto a finite subset of the unit sphere in one higher dimension. The mapping preserves much of the structure of , and unlike previously proposed maps, the density of wrapped spherical codes approaches the density of as the minimum distance approaches zero. We show tha...
متن کاملLog-Normal and Mono-Sized Particles’ Packing into a Bounded Region
Many systems can be modeled with hard and various size spheres, therefore packing and geometrical structures of such sets are of great importance. In this paper, rigid spherical particles distributed in different sizes are randomly packed in confined spaces, using a parallel algorithm. Mersenne Twister algorithm was used to generate pseudorandom numbers for initial coordination of particles. Di...
متن کاملAsymptotically dense spherical codes - Part h Wrapped spherical codes
A new class of spherical codes called wrapped spherical codes is constructed by “wrapping” any sphere packing in Euclidean space onto a finite subset of the unit sphere in one higher dimension. The mapping preserves much of the structure of , and unlike previously proposed maps, the density of wrapped spherical codes approaches the density of as the minimum distance approaches zero. We show tha...
متن کاملMaximal partial packings of Z2n with perfect codes
Abstract A maximal partial Hamming packing of Zn 2 is defined by us to be a family S of mutually disjoint translates of Hamming codes of length n, such that any translate of any Hamming code of length n intersects at least one of the translates of Hamming codes in S. The number of translates of Hamming codes in S is the packing number, and a partial Hamming packing is strictly partial if the fa...
متن کاملMean-field theory of random close packings of axisymmetric particles.
Finding the optimal random packing of non-spherical particles is an open problem with great significance in a broad range of scientific and engineering fields. So far, this search has been performed only empirically on a case-by-case basis, in particular, for shapes like dimers, spherocylinders and ellipsoids of revolution. Here we present a mean-field formalism to estimate the packing density ...
متن کامل